Easy Event Notification Using Multiple Inheritance:
An Example Using WinSock

By Chris Sells, 6/95

C++ is a much-maligned language. It continues to take potshots from all sides. Although I can’t help agreeing with some complaints, one feature — multiple inheritance — is particularly picked on. Multiple inheritance is the capability for a derived class to inherit the properties of more then one base class. Because of the ambiguities of multiple inheritance and because its behavior is not intuitive, some detractors say that it’s difficult to use properly. Some critics have even suggested that multiple inheritance shouldn’t be part of the language at all. In this article, I’ll show you a case in which multiple inheritance is not only nice but also necessary. First, though, let’s review how inheritance is used.

The Three Little Inheritances

C++ has three types of inheritance: inheritance of implementation, inheritance of data and inheritance of interface. Inheritance of implementation is often touted as the be-all and end-all of code reusability. The idea is simple. All derived classes gain the functionality of the base class. Here’s an example:

class CBaseClass
{

 //...

public:

 void SomeNiftyFunctionality();
 //...

};
class CDerivedClass
{

 //...

public:
 void SomeMoreNiftyFunctionality();
};
Here, CDerivedClass gains all the nifty functionality of the base class CBaseClass while still providing its own functionality. Whatever code was used to imp1ement the base class gets reused m the derived class.
But there’s a problem: Building the base class to be derivable and the derived class to build on the functionality of the base class is a difficult, error-prone task. Known as the “fragile base class problem,” this dilemma explains why some people (including Microsoft) argue that implementation inheritance is not a reliable way to reuse code. It’s just too hard to get right.

The second kind of inheritance is data inheritance:

class CBaseClass {

private:

 int nSomeNiftyData;

 //...

};
class CDerivedClass {

private:

 char* szSomeMoreNiftyData;

};
Here, the derived class CDerivedClass gains all the data members of the base class CBaseClass as well as maintaining its own additional data members. This arrangement can be useful, but it doesn’t fit into the abstraction model that’s part and parcel of C++. The idea is that the implementation (read “the non-public data members and member functions”) isn’t what concerns us about an object; what concerns us is the object’s behavior (read “the public member functions”). If that’s the case, the derived case gets the base class’s implementation but shouldn’t be concerned about it. After all a derived class is a client of the base class just like anyone else. Why should it care what the implementation does? (This is a purist’s view and is not always practical, but it’s a good thing to strive for.)

The final use for inheritance — I’ve saved the best for last —
 is interface inheritance. In interface inheritance, no implementation or data is inherited; the only things inherited are virtual functions having little or no behavior.

class CShape

{

public:

 virtual void Draw(...) = 0;

 virtual void Move(...) = 0;

 virtual void Rotate(...) = 0;

}; -

class CCircle : CShape { //...
 };

class CSquare : CShape { //... };

class CTriangle : CShape { //... };

Notice how the interface for CShape contains nothing except pure virtual functions A pure virtual function (signified by the “= 0”) denotes a member function for which the derived class must provide an implementation. The virtual functions are provided merely to define the behavior of CShape The implementation is supplied by the derived classes: CCircle, CSquare and CTriangle These specific shapes know how to draw themselves and know what kinds of data members they need. What is a CShape? It’s nothing but an abstraction. It’s useful if we have a function such as this one:

void DrawShape(CShape* pShape)

{
 pShape->Draw();
}
This function need not know about any of the specific shapes in our system, but when it’s handed one, it knew how to draw It. Why? Because the draw behavior is defined as part of the base class CShape, whereas the implementation is provided by the derived class.

A Different Solution

What does all this have to do with multiple inheritance? As it turns out, multiple

inheritance largely deserves its reputation for being dark and obscure. Strange behaviors and subtle issues lurk there. Problems with multiple inheritance cycles, ambiguities, and

double data inheritance have been chronicled in painful detail. The popular C++ press

Hoards of examples have been written showing how to avoid the problems associated with multiple inheritance by using other features of the language. (These alternatives usually involve containment and templates.)

Instead of replacing multiple inheritance with other language features, I propose a different solution to the problems associated with multiple inheritance: Don’t use it. Or, more precisely, don’t use any of the features of multiple inheritance that cause the problems associated with it. The vast majority of these troubles are caused by using implementation inheritance and data inheritance. Interface inheritance, on the other hand, has almost none of these blemishes. I told you it was the best.

What’s so good about using multiple inheritance and interface inheritance? That’s the cool part. Multiple inheritance and interface inheritance together allow you, as a class designer, to split function overloading between a pair of classes instead of just one.
To understand why this technique is useful, we need take a left turn and look at the new WinSock support in MFC.
MFC’s WinSocket

In the newest version Of MFC, Microsoft provides a C++ wrapper around the Windows

Sockets API. A socket is an end point on a data conduit
 between two entities. Although a socket can support any kind of network as well as two processes on the same machine, sockets typically connect processes on different machines across a TCP/IP network. Sockets are the data connections that the Internet is built on. When you start up your Internet mail application or your USENET news application, you’re opening a client socket and requesting a connection with the mail or news sever. If the server accepts the connection, the client requests information from the server using awell-known protocol such as Finger, SMTP, POP3, NNTP. FTP, Telnet and so on.
MFC’s encapsulation of a WinSock socket looks something like this:

class CAsyncSocket
{
public:
 BOOL Create(...);
 BOOL Open(...);
 BOOL Connect(...);
 BOOL Receive(...);

 BOOL Send(...);
 virtual void OnConnect(...);

 virtual void OnReceive(...);

 virtual void OnConnect(...);

 virtual void OnConnect(...);

};
The operations on the socket are similar to those for a file – create, open, read, write, close, and so on – except for one important difference: They’re asynchronous. This means that we can’t just read and write at will; we must wait for one of the OnXxx events to be triggered. These events indicate that we’ve connected. There’s data to read, there’s data to write, the connection has been closed, and so forth.

Asynchronous extensions to the original Berkeley sockets interface (see the sidebar) give us the asynchronous event notifications that the event-driven Windows environment requires. When these events are triggered, we know it’s safe to read or write data.
 We know that we’re finished reading or writing when we run out of data or when we get blocked. At the moment a socket blocks, there’s nothing more we can do with the socket. Eventually, we’ll get another event notification and we can resume the connection.

Asynchronous Alternatives

Asynchronous sockets aren’t the only way to go. The socket API originated in Berkeley Unix and was fully synchronous. Programs reading and writing data over Sockets do one of two things: block or poll. A blocked process waits in a read until there is something to be read, which can take microseconds or microcenturies
. Until the read returns or the process is interrupted, it doesn’t do anything
.

Polling is the opposite technique. Instead of waiting to read, a process runs in a loop, checking for something in the pipe to read. When something is there, it reads it. If nothing is there, the process is free to use the rest of the loop to do useful work.
Like old-fashioned DOS programs, however, Unix programs are procedural;
Windows programs are event-driven. They must be ready to take any kind of input from a user at any time. If a Windows program were blocked in a read waiting for data to come down to it’s process, it couldn’t run the message loop that makes it event-driven
.

A polling check can be put into a Windows message loop, but this method leads to inconvenient PeekMessage loops as well as the unnecessary inefficiency of constantly checking for message that may occur only sporadically
.
Example Application

In the example, we have a finger client application. A finger client is simply a socket

application that talks to a finger server using the Finger protocol. It’s a useful protocol to find out whether someone is logged onto a Unix machine.
The protocol between a finger client and a finger server has been defined by the Internet

community. It calls for the server to receive a single line of text followed by a carriage

return/linefeed pair. The line of text can be empty or can contain the name of someone the finger server knows about. If it’s empty, the finger server assumes that you’re requesting all the information it has about everyone it knows about. The server sends the information you requested. It you connect to the teleport.corn server (my Internet service provider) and send a blank line of text, it will send you a list of all the people currently logged in. On the other hand, if you send csells (my login name at teleport.corn), it will give you the information it has about me.

In our finger client application we want a socket to perform two very simple operatons:

Send a single line of text and receive a response from the server. We want to use a CAsyncSocket in our CMfcFingerView so that we can talk to the finger server. We also want to handle the notification for the events in the view so that we can view the server’s response.

YOU might think that this design would look like this:
class CMfcFingerView

{

private:

 CAsyncSocket m_socket;

 virtual void OnSend(...);

 virtual void OnRead
(...);

public:

 void OnFinger();

};

Assume that the OnFinger member function is called when we choose the Finger menu item. In OnFinger, we open the socket (using the rn_socket data member), write the finger query string to the socket in OnSend, and wait for OnRead so that we can get the results of the finger query. It looks perfectly reasonable but it doesn’t work.

The reason it doesn’t work is that the notifications are triggered in the CAsyncSocket class (look at the definition of CAsyncSocket above) and not the CMfcFingerView class. What does the CAsyncsocket class do with those notifications? Nothing. It doesn’t know what you’re using the socket for.

But can’t we just derive a class – call it CFingerSocket – from a CAsyncSocket and handle the OnSend and OnRead notifications? You bet.
 But that leaves one problem: What do we do with the read data? All too often the answer to that question, is, “Oh, well we’ll make CFingerSocket know about the CMfcFingerView and it’ll send the data up when it arrives.”

We don’t want to do this, for a good reason: What happens if we want to reuse our CFingerSocket class, maybe in app that doesn’t have a CMfcFingerView class? FingerSocket depends on the CMfcFingerView; one of them can’t be used without the other. They’re joined forever at the hip.

We want to use the services of the CAsyncSocket to talk with the finger server, and we’d like these events to be available in CMfcFingerView. Can we solve this problem? This wouldn’t be much of an article if we couldn’t.
 Consider this class definition:

class CMfcFingerView : public CView, public CSocketSink

{

 CAsynchSocket m_socket;
public:

 CMfcFingerView() { SetSink(this; }

 virtual void OnSocketRead
(CAsyncSocketEx* pSocket, ...);

 virtual void OnSend
(CAsyncSocketEx* pSocket, ...);

};

Instead of deriving CMfcFinderView from CView, we multiply inherit it from both CView and CSocketSink. CSocketSink is nothing but an interface class
 (like CShape above). CSocketSink looks like this:
class CSocketSink
{

protected:

 // Default implementation does nothing

 virtual void OnSocketRead(...);

 virtual void OnSocketSend(...);

};

The key to making technique work is the new class CAsyncSocketEx, which is derived from CAsyncSocket. CAsyncSocket adds one data member (a pointer to a CSocketSink) and one member function, SetSink(CSocketSink* pSink). It also overrides the event handlers. The event handlers pass the events to the CSocketSink, which in this case happens to be the CMfcFingerView, now both a CView and a CSocketSink. The asynchronous event handlers in CAsyncSocketEx look like this:

void CAsyncSocketEx::OnRead(...)
{

 if(m_pSink)
m_pSink->OnSocketRead(this, ...);

}

All the event handlers do is to pass the events to the container object – just the behavior we wanted. And the good news is that CAsyncSocketEx doesn’t have to know anything about the CMfcFingerView object. CAsyncSocketEx can pass the events to any CSocketSink, so you multiply inherit any object that contains a CAsyncSocketEx from a CSocketSink and immediately be eligible for socket notifications.

The virtual member functions of CSocketSink are not pure virtual function, so we don’t have to override them every time we derive from the base class.
 This means that CMfcFingerView needs to override only those CSocketSink member functions that it cares about. The other functions get the default implementation; in this case, this means that the events pass by unnoticed and unmourned
.

There are two more points to make.
 First, notice that we’re passing to the sink the pointer to the actual socket that received the event.
 If we have more than one socket, we can tell

which one the event occurred on.
Second, this technique can be used for far more than just socket event notifications. Anytime an object generates any kind of event that the container needs to know about, this technique can work. Obvious examples include timers, input devices, Windows controls and the like
. All that’s involved is to create an interface class (an event sink) that holds nothing but a virtual member function for each possible event. Then provide an object that generates these events (an event source) and simply pass those events to the sink, which is set using a member function such as SetSink.

I built the sample code using VC++ 2.1 and the MFC WinSock classes provided with it. If you have the newest 16-bit version of VC++, you should be able to port this code without any problem. The code is a simple finger client that uses the CAsyncSocketEx and CSocketSink event sink and event source
 I’ve described. Notice that the AsyncSocketEe and CSocketsink Classes are trival, but they allow the CMicFingerView class to handle the socket events without tying the CAsyncSocketEx forever to the CMfcFingerView. Not too shabby for a misunderstood and unwanted feature of the language, wouldn’t you agree?

COM Artist

If you think that multiple inheritance and interface inheritance are great, check out Microsoft’s component object model
 specification (available online and on the latest

Microsoft Developer Network CD-ROM
). COM defines a language-independent, OS-independent, vender-independent
 way to develop interoperable binary objects. You might

dimly remember it as the architectural foundation for OLE 2.0
.

OLE and COM are almost as much maligned as C++ is (give them time...
 they’re still new). One of the main reasons that COM gets so much guff is that, unlike C++, COM doesn’t support inheritance of implementation (remember that pesky fragile base class problem?) or inheritance of data. The only kind of inheritance it does support is, you guessed it, inheritance of interface. If you enjoyed this article, you’ll love COM.
 I know I do.
TODO: sidebar

[ed: Who knew I’d write the exact same article 6 years later?]

�I still use this style of mixing code and prose, commenting out what’s not necessary to make my point. I’m sure I got that from Don.

�Wow. I did love the em-dash, didn’t I?

�Doh! Maybe this is where I learned to always copy my code from a working sample…

�Oh my goodness, I do blather on…

�I just don’t use the word “conduit” enough in my writing.

�Come on! What about the actual benefits of async sockets?!?

�nice

�and that’s bad because…?!?

�Ick!

�And so…?

�And hence RSS was born…

�Where’s the base class?!?

�<sigh> OnReceive maybe?!?

�And my Midwestern roots come shining through!

�How about a little code sample to show this assumed implementation to make this point easier to grasp…

�So far, this isn’t much of an article anyway!

�OnSocketReceive?

�OnSocketSend?

�What the heck is an ‘interface class’?!?

�How hard would that have been to show inline?!? It’s merely {} instead of ;

�I do miss not being able to do this in C#.

�Except now this isn’t an example of interface inheritance, it’s an example of implementation inheritance. Doh!

�nice

�subtle… Not!

�Whoa. How prophetic am I, anticipating the .NET Framework Class Library event pattern. :)

�Double whoa.

�“event source and event sink”

�“Component Object Model”

�Remember when we had to wait for CDs to get info? And how we used to pour over them when they came? Now I get DVDs of the stuff and I toss them into a box. RSS, take me away…

�What Kool Aid was I drinking that day?!?

�Die! Die!

�Whoa. That *was* prophetic…

�Except for the minor details that COM requires you to implement all methods of an interface, blowing most of the convenience of my proposed mechanism right out of the water and motivating the invention of delegates.

